Skip to Main Content
Rechercher des emplois
The Walt Disney Company. Be you. Be here. Be part of the story.

Be Part of the Story

Principal Machine Learning Engineer - ESPN+ Personalization

Postuler maintenant Postuler ultérieurement Job ID 10106487 Emplacement San Francisco, Californie, États-Unis / New York, New York, États-Unis / Seattle, Washington, États-Unis / Los Angeles, Californie, États-Unis Entreprise Disney Entertainment and ESPN Product & Technology Date de publication 16/06/2025

Résumé du poste:

Disney Entertainment and ESPN Product & Technology

Technology is at the heart of Disney’s past, present, and future. Disney Entertainment and ESPN Product & Technology is a global organization of engineers, product developers, designers, technologists, data scientists, and more – all working to build and advance the technological backbone for Disney’s media business globally.

The team marries technology with creativity to build world-class products, enhance storytelling, and drive velocity, innovation, and scalability for our businesses. We are Storytellers and Innovators. Creators and Builders. Entertainers and Engineers. We work with every part of The Walt Disney Company’s media portfolio to advance the technological foundation and consumer media touch points serving millions of people around the world. 

Here are a few reasons why we think you’d love working here:

1. Building the future of Disney’s media: Our Technologists are designing and building the products and platforms that will power our media, advertising, and distribution businesses for years to come.

2. Reach, Scale & Impact: More than ever, Disney’s technology and products serve as a signature doorway for fans' connections with the company’s brands and stories. Disney+. Hulu. ESPN. ABC. ABC News…and many more. These products and brands – and the unmatched stories, storytellers, and events they carry – matter to millions of people globally. 

3. Innovation: We develop and implement groundbreaking products and techniques that shape industry norms and solve complex and distinctive technical problems.

Job Summary:

Product Engineering is a unified team responsible for the engineering of Disney Entertainment & ESPN digital and streaming products and platforms. This includes product engineering, media engineering, quality assurance, engineering behind personalization, commerce, lifecycle, and identity.

ESPN is building the next-generation video experience for our global streaming platform, and personalization will be at the core of delivering a world-class user experience. We are seeking a Principal Machine Learning Engineer to serve as the technical architect and driving force behind the design, development, and deployment of our real-time recommendation engine. This is a unique opportunity to lead the technical direction and build foundational personalization capabilities that will directly shape user engagement, satisfaction, and long-term growth.

In this role, you will partner closely with engineering, product, data science, and business teams to define system architecture, design large-scale ML solutions, and drive end-to-end ownership of real-time recommendation systems from 0 to 1. You will bring deep technical expertise in recommendation algorithms, real-time serving architectures, and large-scale machine learning systems, as well as the leadership and communication skills to influence cross-functional teams.

Responsibilities and Duties of the Role:

  • Serve as the technical architect and primary owner for the design and implementation of ESPN’s real-time short-form video recommendation system.

  • Design, develop, and deploy large-scale, end-to-end ML pipelines for real-time retrieval, ranking, and personalization at scale.

  • Lead research, prototyping, and product ionization of cutting-edge recommendation algorithms, leveraging deep learning, embeddings, sequence models, transformers, and multi-task learning.

  • Define system architecture for low-latency online inference, streaming data pipelines, feature stores, and online/offline model serving.

  • Collaborate with cross-functional stakeholders to define personalization strategies, system requirements, metrics, and experimentation frameworks to drive continuous improvement.

  • Lead complex technical discussions and make high-impact design decisions balancing model quality, scalability, system latency, and operational reliability.

  • Establish ML engineering best practices, development standards, and model governance processes to ensure robust, reliable, and reproducible ML systems.

  • Mentor and coach other machine learning engineers, helping to grow technical capability across the team and broader organization.

  • Stay current with state-of-the-art research and industry trends; proactively incorporate emerging technologies into ESPN’s personalization roadmap.

Required Education, Experience/Skills/Training:
Basic Qualifications:

  • Proven track record of designing and deploying real-time, large-scale ML recommendation systems (preferably in consumer or streaming platforms).

  • Strong expertise in machine learning algorithms, deep learning architectures (e.g., sequence models, transformers, embeddings, multi-task learning), and personalization methodologies.

  • Deep understanding of real-time serving architectures, online inference, feature stores, streaming data pipelines, and low-latency ML systems.

  • Proficiency in Python and common ML frameworks (e.g., TensorFlow, PyTorch, ONNX), and experience integrating ML models into production services.

  • Demonstrated technical leadership in cross-functional projects; ability to independently own technical solution design, architecture, and execution in ambiguous 0→1 environments.

  • Strong communication skills to collaborate with engineering, product, data, and business stakeholders

Preferred qualifications:

  • Experience building short-form video or content-based recommendation systems, including ranking, retrieval, exploration/exploitation, and diversity modeling.

  • Deep knowledge of real-time personalization challenges such as cold start, feedback loops, delayed labels, and temporal dynamics.

  • Experience with experimentation platforms (e.g., A/B testing, bandits, reinforcement learning) to drive continuous optimization of recommendation systems.

  • Experience designing ML systems on cloud platforms (AWS, GCP, Azure) with distributed compute, streaming data, and scalable online serving.

  • Familiarity with retrieval models, approximate nearest neighbor search, graph-based recommenders, and large-scale embedding management.

  • Experience collaborating with product and business stakeholders to define personalization goals, metrics, and KPIs.

  • Strong mentoring capability to help grow and guide a new ML team; prior experience establishing technical standards, ML development best practices, and team capability building.

  • Prior experience operating in a fast-paced startup or new product incubation environment.

Experience with:

  • 8+ years of hands-on experience building and deploying machine learning models in production environments, with at least 2+ years in recommendation systems or personalization.

Required Education  

  • Bachelor’s degree in Computer Science, Information Systems, Software, Electrical or Electronics Engineering, or comparable field of study, and/or equivalent work experience

#DISNEYTECH


The hiring range for this position in Los Angeles, CA is $202,900 - $272,100 per year, in San Francisco, CA $222,200 - $297,900 and in New York & Seattle, WA is $212,600 - $285,100 per year. The base pay actually offered will take into account internal equity and also may vary depending on the candidate’s geographic region, job-related knowledge, skills, and experience among other factors. A bonus and/or long-term incentive units may be provided as part of the compensation package, in addition to the full range of medical, financial, and/or other benefits, dependent on the level and position offered.

Informations Supplémentaires:

DISNEYTECH



Sur Disney Entertainment and ESPN Product & Technology:

Sur The Walt Disney Company:

The Walt Disney Company, ainsi que ses filiales et sociétés affiliées, forme l’une des principales entreprises internationales diversifiées de divertissement familial et de médias. Elle comprend trois secteurs d'activités essentiels : Disney Entertainment, ESPN et Disney Experiences. Depuis ses modestes débuts en tant que studio de dessins animés dans les années 1920 jusqu’à son statut de référence actuel dans le secteur du divertissement, Disney poursuit fièrement sa tradition de création d’histoires et d’expériences exceptionnelles pour tous les membres de la famille. Les histoires, les personnages et les expériences de Disney touchent les consommateurs et les visiteurs du monde entier. À travers nos activités présentes dans plus de 40 pays, nos employés et cast members collaborent pour créer des expériences de divertissement appréciées à la fois au niveau universel et local.

Le poste est rattaché à Disney Streaming Technology LLC , qui fait partie d’une entreprise que nous appelons Disney Entertainment and ESPN Product & Technology.

Disney Streaming Technology LLC est un employeur qui souscrit au principe d’égalité des chances à l’emploi. Les candidat(e)s seront pris(es) en considération pour un emploi sans distinction de race, de religion, de couleur, de sexe, d’orientation sexuelle, de genre, d’identité de genre, d’expression de genre, d’origine nationale, d’ascendance, d’âge, d’état matrimonial, de statut militaire ou d’ancien combattant, d’état de santé, d’informations génétiques ou de handicap, ou de tout autre motif interdit par la loi fédérale, étatique ou locale. Disney défend un environnement commercial où les idées et décisions de tous et toutes nous aident à grandir, innover, créer les meilleures histoires et être pertinents dans un monde en évolution constante.

We will consider for employment qualified applicants with criminal histories consistent with applicable law.

Postuler maintenant Postuler ultérieurement

Abonnez-vous à nos alertes d'offres d'emploi

Inscrivez-vous pour recevoir de nouvelles alertes d’emploi et des informations sur notre société selon vos préférences.

Specify LocationsSélectionnez une catégorie parmi la liste proposée. Sélectionnez ensuite parmi les lieux proposés. Enfin, cliquez sur "Ajouter" pour créer votre alerte.